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In his dissertation research, Hillel Einhorn examined a question that is

central to behavioral decision research and of substantial applied interest: How

do people evaluate and choose among a set of multiattribute alternatives

(Einhorn, 1970; Einhorn, 1971)? Einhorn concluded that no single model such as

additive utility was likely to be an adequate general representation of

evaluative decision making. He proposed that conditions should be specified

under which various models apply as representations of human decision making. The

work described in this chapter follows Einhorn's suggestion and considers why

decision makers, given a particular decision task, select one particular decision

strategy instead of others.

Contingent strategy selection reflects the fascinating ability of

individuals to adapt to a wide variety of environmental conditions. The issue of

strategy selection also reflects a growing concern in cognitive psychology with

the regulation of cognition, or "metacognition" (Brown, Bransford, Ferrara, &

Campioni, 1983). The research program described in this chapter emphasizes the

adaptivity of human decision behavior to task demands and the cognitive control

question of how one decides how to decide.

Deciding How To Decide

The most frequently advocated approach to explaining strategy selection is

to assume that strategies have differing advantages and disadvantages and to

hypothesize that an individual selects the strategy that is "best" for the task

(Beach & Mitchell, 1978). Several factors, such as the chance of making an error.

(Thorngate, 1980), avoidance of conflict (Hogarth, 1987), and justifiability

(Tversky, 1972), can affect decision makers' perceptions of the appropriateness

of a strategy for a particular task and hence can affect strategy selection.

However, our research has focused on the role played in strategy choice by the
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cognitive effort (mental resources) required to execute a strategy in a specific

task environment.

The idea that decision making is influenced by considerations of cognitive

effort is an old one (e.g., Simon, 1955; Marschak, 1968). It seems obvious, for

example, that differert strategies require different amounts of computational

effort. Expected utility maximization, for instance, requires a person to

process all relevant problem information and to trade off values and beliefs.

The lexicographic choice rule (Tversky, 1969), on the other hand, chooses the

alternative which is best on the most important attribute, ignoring much of the

potentially relevant problem information.

At a more precise level of analysis, however, a comparison among decision

strategies in terms of cognitive effort is more difficult. In part this is

because decision strategies proposed in the literature have varied widely in

terms of their formal expression. Some have been proposed as formal mathematical

models (e.g., elimination-by-aspects, Tversky, 1972), and others as verbal

process descriptions (e.g., the majority of confirming dimensions rule, Russo &

Dosher, 1983). The research described hera developed a language that could be

used to express a diverse set of decision strategies in terms of a common set of

elementary information processes. That language allows strategy selection to be

investigated at a detailed information processing level rather than at a more

general level of analysis, such as comparisons of analytic vs. nonanalytic (Beach

& Mitchell, 1978) or analytic vs. intuitive strategies (Hammond, 1986). One can

examine, for instance, how cognitive effort is affected by both the amount of

information to be processed and the specific mix of elementary information

processes used.

In addition to cognitive effort, we have been concerned with how the use of

simplified decision rules affects the accuracy of decisions. For example, a
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simple equal weighting strategy can closely approximate the accuracy of an

optimal weighting rule in some task environments (Einhorn & Hogarth, 1975).

The rest of this chapter is organized as follows: First, studies which test

and elaborate the implications of an effort/accuracy framework for strategy

selection are briefly reviewed. The studies include (1) Monte-Carlo simulations

of how the effort and accuracy of different strategies might vary across task

environments; (2) An empirical test of various models of subjects' effort using

different decision strategies in different choice environments; and (3)

Experiments that examine whether the actual decision behaviors exhibited by

subjects across different task environments are consistent with the efficient

processing patterns identified by the simulation. Some unresolved issues

relating to the effort/accuracy framework are then considered, such as the extent

to which strategies may not be selected as much as "constructed" throughout the

decision process. Such "construction" may allow individuals to notice and

exploit structure in the choice set in ways that reduce effort (Bettman, 1979).

Finally, some implications of our research for decision aiding are described.

Effort, Accuracy, and Choice Environments

As typically formulated, decision problems consist of three basic

components: (1) The alternatives available to the decision maker; (2) Events or

contingencies that relate actions to outcomes, as well as their associated

probabilities; and (3) The values associated with the outcomes. These

informational elements, along with a goal statemet.t (such as "choose the

preferred alternative"), represent the task environment presented to a decision

maker. The decision maker's internal representation of this task environment is

the individual's problem space, containing the solution (i.e., the preferred

alternative) which must be identified (Newell & Simon, 1972). Generally,
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decision tasks become more difficult with more alternatives, multiple

contingencies, and multiple conflicting dimensions of value.

Much research supports Einhorn's suggestion (1970, 1971) that an individual

will utilize a number of different information processing strategies to solve

decision tasks (Abelson & Levi, 1985). Sometimes the strategies involve an

exhaustive use of the available information in a form of compensatory processing.

However, often the strategies used are heuristics that simplify search through

the problem space either by disregarding some problem information or simplifying

the processing done on particular elements of the problem. Examples of the

latter are within-attribute comparison as opposed to the combining of information

across attributes (Russo & Dosher, 1983). Alternative heuristics such as

elimination-by-aspects (EBA), satisficing (SAT), lexicographic (LEX), and equal

weighting (EQW) represent different simplification strategies for search through

the problem space. For example, the equal weighting rule reduces processing by

ignoring any differential weights for the decision outcomes while still examining

the values for all outcomes. The lexicographic rule, on the other hand, uses the

weights to limit search to one or a few of the most important attributes and

simplifies processing by only using comparisons of one outcome value to another.

More generally, people seem to react to the discrepancy between information

processing demands and information processing capacity in decision making by (i)

selectively processing a subset of the available information and/or (2)

selectively applying operations to that information that are easier to perform.

The use of heuristics that save effort can also lead to serious decision

errors (Tversky, 1969). However, some cognitive simplifications can both save

effort and maintain reasonably high levels of accuracy in a given task

environment (Einhorn & Hogarth, 1975). This point is crucial; we do not believe

that heuristics and biases should be viewed as synonymous. Rather, we argue that
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the use of heuristics often represents intelligent, if not optimal, decision

making. Given this perspective, characterizing the effort required to use

various heuristics and the accuracy of those heuristics in various task

environments is essential. In the next section, we report Monte-Carlo simulation

experiments that provide estimates of accuracy and effort for several heuristics

in different decision task environments. Decision makers can potentially use

such estimates to both save effort and maintain accuracy by selecting different

heuristics for different task environments. In later sections, we examine

whether decision makers in fact adapt to different tasks in ways that the

simulations suggest are relatively efficient (i.e., that maintain accuracy with

savings in effort).

Monte-Carlo Simulations of Effort and Accuracy in Choice

The two main purposes of the simulation studies were (1) To characterize the

effort and accuracy of various strategies in different decision environments; and

(2) To develop insights into how processing might change if efficient

effort/accuracy tradeoffs were desired in selecting decision strategies. The

simulations provide a "task analysis" of the problem of strategy selection in

decision making. Additional details on the simulations can be found in Johnson

and Payne (1985) and Payne, Bettman, and Johnson (1988).

Measuring Strategy Effort

Building on ideas of Newell and Simon (1972), ten decision strategies were

decomposed into elementary information processes (EIPs). The set of strategies

included weighted additive (WADD), elimination-by-aspects (EBA), equal weight

(EQW), lexicographic (LEX), majority of confirming dimensions (MCD), satisficing

(SAT), lexicographic semi-order (LEXSEMI), two combined strategies, and a random

choice rule. Each decision strategy was viewed as a specific sequence of EIPs,

such as reading the values of two alternatives on an attribute, comparing them,
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and so forth. The set of EIPs used in the simulations included operators to (I)

Read an alternative's value on an attribute into working memory; (2) Compare two

alternatives on an attribute; (3) Add the values of two attributes in working

memory; (4) Calculate the size of the Difference of two alternatives for an

attribute; (5) Weight one value by another (Product); (6) Eliminate an

alternative from consideration; (7) Move to the next element of the task

environment; and (8) Choose the preferred alternative and end the process.

A count of the total number of EIPs used by a strategy to reach a decision

in a particular choice environment provides a straightforward measure of the

effort associated with the use of that decision strategy in that environment.
1

Several areas of cognitive research use EIP counts to measure processing load

(e.g., Card, Moran, & Newell, 1983).

To illustrate how EIP counts of effort would be determined, consider the set

of EIPs given above and a simple decision problem involving two options (A and

B), two events with probabilities (weights), and two payoff values per option

(one payoff for each of the two possible outcomes). For an elimination-by-

aspects rule, the process might proceed as follows: First, the decision maker

finds the most probable outcome (most important attribute; throughout this paper

we use the terms outcome and attribute interchangeably). This involves reading

the two probability values and comparing the two values to determine which is

larger (2 Reads and I Compare). Next, the decision maker might acquire an

explicit cutoff value and then compare the payoff values on the most probable

outcome for each option against that cutoff value. If the first option (A)

failed the cutoff and the second option (B) passed ti.e cutoff, then a choice of B

would be made. This process of comparing options to the cutoff involves 3 Reads,

2 Comparisons, I Elimination, and 1 Choice. Thus, the entire decision process
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consists of 5 Reads, 3 Compares, I Elimination, and I Choice, for a total EIP

Count of 10.

In contrast, if the weighted adding rule were used on the same size decision

.problem (2 options, 2 events, and 4 payoff values), one might proceed as follows:

First the probability of event 1 and the payoff of option A given event I would

be acquired (2 Reads). Next, the payoff would be multiplied by the probability

(1 Product). The process would be repeated for the next probability and payoff

and the two products would be added, for a total of 4 Reads, 2 Products, and I

Addition. The same process would be repeated for option B. Finally, the overall

values for A and B would be compared (I Compare) and the option with the largest

value chosen (1 Choice). The total EIP count would be 16 (8 Reads, 4 Products, 2

Additions, 1 Compare, and i Choice).

A particular set of EIPs, like the one given above, requires a theoretical

judgment regarding the appropriate level of decomposition. For instance, the

product operator might itself be decomposed into more elementary processes. We

hypothesized, however, that a reasonable approximation of the cognitive effort

associated with a strategy could be obtained from the above level of

decomposition. An experimental test of this hypothesis is reported below.

The strategies examined in the simulations differed in several ways, e.g.,

amount of information processed, selectivity in processing, and form of

processing. For example, the Weighted Additive (WADD) process involves no

selectivity in processing. The values of each alternative on all the relevant

attributes and all the relative importances (weights) of the attributes are

considered. The WADD strategy also uses alternative-based processing: all

information about the multiple attribute values of a single alternative is

proce!-sed before information about a second alternative is considered. In

contrast, elimination-by-aspects (EBA) selectively attends to a subset of the
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available information. The processing of information is also attribute-based.

That is, information about the values of several alternatives on a single

attribute is processed before information about a second attribute is processed.

When the results of the simulation are presented in Table I below, the form of

processing and selectivity are indicated for each rule as an aid in interpreting

those results.

Measuring Accuracy

Accuracy of choice could be defined by basic principles of coherence, such

as avoiding selection of dominated alternatives or intransitive patterns of

preferences. However, more specific criteria for choice accuracy can be

developed in certain types of task environments. For instance, the expected

utility (EU) model is generally suggested as a normative decision procedure for

risky choice because it can be derived from more basic principles. A special

case of the EU model, the maximization of expected value (EV), has been used as a

criterion to investigate the accuracy of decision heuristics via computer

simulation (Thorngate, 1980). A similar model, the weighted additive rule, is

often used as a criterion for decision effectiveness in multiattribute choice

(Zakay & Wooler, 1984).

In our research, we have emphasized a measure of accuracy that considers

the performance of a heuristic relative to the upper and lower baseline

strategies of (1) maximization of Expected Value (or the equivalent Weighted

Additive Value) and (2) random choice. The acpuracy measure provides an

indication of the relative performance of heuristics:

Relative EVheuristic rule choice-EVrandom rule choice

Accuracy EVexpected value choice-EVrandom rule choice

This measure is bounded by a value of 1.0 for the expected value rule and an

average value of 0.0 for the random rule. While we have relied primarily on this
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measure of relative accuracy, we have used other measures with similar results

(Johnson and Payne, 1985). Note, incidentally, that an Expected Value strategy

represents a complete use of the information in the problem statement. A random

choice rule, in contrast, uses none of the information.

Task and Context Environments

Several aspects of choice tasks were investigated in the simlations,

including number of alternatives, number of attributes (outcomes), time pressure,

dispersion of probabilities within each gamble, and the possibility or absence of

dominated alternatives. Task size (i.e., the number of alternatives and the

number of attributes) was included in the simulation because variations in choice

problem size have produced some of the clearest examples of contingent decision

behavior (Payne, 1982). Time pressure was of particular interest, since the use

of a normative decision strategy like expected value maximization may be less

attractive or infeasible under time constraints (Simon, 1981). Under time

pressure, deciding how to choose becomes a selection of the "best" of the

available heuristics, not a choice between using some heuristic or the optimal

normative rule. To illustrate the dispersion of probabilities variable, a four

outcome gamble with a low degree of dispersion might have probabilities of .30,

.20, .22, and .28 for the four outcomes. In contrast, a gamble with a high

degree of dispersion might have probabilities such as .68, .12, .05, and .15.

This variable was included because Thorngate (1980) had suggested that

probability information may be relatively unimportant in making accurate risky

choices (see also Beach, 1983). Finally, the absence or possibility of dominated

alternatives was included because McClelland (1978), among others, has suggested

that the use of certain simplification procedures, such as the equal weighting

strategy, is dependent upon the presence of dominated alternatives.
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Time constraints, number of alternatives, and number of attributes represent

task variables, which are variables associated with general characteristics of

the decision problem and not dependent on the particular values of the

alternatives. Dominance possible or absent and dispersion of probabilities, on

the other hand, represent context variables, which are Variables associated with

the particular values of the alternatives (Payne, 1982).

Results

Table 1 summarizes the results of our simulations for the two context

variables and the two extreme time pressure conditions (absent and severe).

These results support four major conclusions. First, the simulations show that

heuristics, in at least some task environments, can approximate the accuracy of

normative rules with substantial savings in effort. For example, in an

environment characterized by high dispersion in probabilities, dominance

possible, and no time constraint., the lexicographic strategy achieved a 90%

relative accuracy score, with only about 40 percent of the effort that would be

needed to use a normative strategy like EV (i.e., 60 as opposed to 160 EIPs).

--------.----------------------------------

Table 1 about here

Second, no single heuristic did well across all decision environments. For

instance, in the no time pressure condition, when the dispersion in probabilities

varied from high to low, the accuracy of the lexicographic rule dropped from 90%

to 69%. In contrast, the alternative simplification represented by the equal

weighting strategy produced an increase in accuracy from 67% to 89% as dispersion

ii probabilities went from high to low. The existence of efficient heuristics

and the sensitivity of heuristics to changes in task environments are highlighted

by Figure 1, which shows the relative effort and accuracy associated with
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different strategies in two different environments. One prediction that can be

drawn from Figure 1 concerns the relative effort and accuracy of the equal weight

and lexicographic strategies as a function of dispersion in probabilities. Note

that for the equal weight strategy in a low dispersion environment and the

lexicographic strategy under high dispersion, the accuracy obtained is roughly

equal. However, less effort is required in the high dispersion condition. Thus,

a decision maker desiring relatively high levels of accuracy could maintain that

accuracy across contexts through a shift in strategies, but with a substantial

savings in effort in the high dispersion environment. More generally, Figure I

and other results reported in Johnson and Payne (1985) and Payne et. al. (1988)

suggest that in order to achieve both a reasonably high level of accuracy and low

effort, a decision maker would have to use a repertoire of strategies, with

strategy selection contingent upon situational demands.

-------------------------------

Figure I about here

A third conclusion was that both the effort and accuracy of strategies were

differentially affected by number of alternatives, number of attributes, and the

possibility or absence of dominance. For example, the effort required to use

heuristics such as EBA increased much more slowly than the effort required to use

the weighted additive rule as the number of alternatives increased. This

simulation result is compatible with substantial empirical research showing

strategy shifts due to the number of alternatives (Payne, 1982). The decision

task characterized by dominance absent and low dispersion in probabilities was

one in which no heuristic did particularly well in terms of accuracy. The

accuracy score of the best simple heuristic, LEX, was only .67, or .22 less than

the accuracy score for the "best" heuristic in the other environments. Since a
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decision maker would not be able to reduce effort appreciably without suffering a

substantial loss in accuracy in this type of task environment, such an

environment should be perceived as particularly difficult. In fact, when asked,

subjects report that decisions in the dominance absent, low dispersion choice

environments are more difficult. Subjects also take longer to make decisions in

this environment than in the other three environments representing combinations

of dominance possible or absent and dispersion.

Fourth, time constraints were shown to have differential effects on the

various decision strategies. The weighted additive rule, for example, showed P

reduction in accuracy from the baseline value of 1.0 under no time pressure to an

average accuracy of only .12 under the most severe time constraint in the

dominance absent-low dispersion environment. Strategies which require many EIPs

show degraded performance under time pressure because such procedures must be

truncated when time runs out.2 In contrast, the EBA heuristic was relatively

unaffected by time pressure. The average accuracy across environments was only

reduced from .69 under no time pressure to .56 with severe time pressure. More

generally, under high time pressure, strategies that process at least some

information about all alternatives as soon as possible performed best.

The simulation results indicated what a decision maker could do to adapt to

various decision environments. The results clearly suggested that a decision

maker could maintain a high level of accuracy and minimize effort by using a

diverse set of heuristics, changing rules as context and task characteristics

change.

Note, however, that the simulation results alone do not identify which

particular strategy a decision maker will select in a given decision task. That

would depend on the degree to which a decision maker was willing to trade

decreases in accuracy for savings in effort. This tradeoff might depend on
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factors such as the decision maker's goal structure, the size of the payoffs, and

the need to justify a decision. We will discuss the role of such factors in

strategy selection in more detail below, but it is important to recognize that

the simulation indicates general changes in processing that might be expected

regardless of any particular trade-off between effort and accuracy, e.g., the

effect of dispersion on the attractiveness of a lexicographic versus equal-weight

strategy.

Thus, the results of the simulation yield interesting predictions about the

general patterns of processing which might characterize decision makers desiring

to make efficient accuracy/effort tradeoffs. However, the simulation work itself

would remain only suggestive without further validation. For example, the

simulation makes the crucial assumption that EIP counts represent reasonable

measures of effort. Both this assumption and the predicted patterns of

processing can be examined experimentally with actual decision makers. The next

two sections report this empirical work.

Cognitive Effort in Choice

The research reported in this section examined the assumption that EIP

counts provide a measure of cognitive effort. Decision makers made choices using

different prescribed strategies for choice sets varying in size. Both decision

latencies and self-reports of decision difficulty were obtained as measures of

strategy execution effort. The crucial question was whether models based on EIP

counts could predict these two indicators of cognitive effort in choice. In

addition, we characterized how the effort required by subjects to use different

decision strategies varied as task size (number of alternatives and number of

attributes) varied. Given space constraints, the following description of our

methods and results is necessarily limited; see Bettman, Johnson, and Payne (In

press) for more details.
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Overview of method

Seven subjects were trained to use six different decision strategies:

weighted additive, equal weighting, lexicographic, elimination-by-aspects,

satisficing, and majority of confirming dimensions. Each strategy was used by

each subject in a separate session to make twenty decisions ranging in problem

size from two to six alternatives and from two to four attributes. The decision

problems involved selection among job candidates. For each session, subjects

were to use the prescribed rule exactly as given to them to make their

selections. Subjects used the Mouselab computer-based information acquisition

system to acquire information and make their decisions (Johnson, Payne, Schkade,

and Bettman, 1988). Subjects used a mouse as a pointing device to move a cursor

around a screen containing the probabilities and outcome values in a matrix

format. When the cursor pointed to a cell of the matrix, the information in that

cell was displayed and all other information remained concealed. The computer-

based acquisition system monitored the subjects' information sequences and

recorded latencies for each acquisition, the overall time for each problem, any

errors made by the subject (i.e., departures from the prescribed search pattern

or choice), and the choice. In addition, subjects rated the difficulty of each

choice and the effort each choice required on two response scales presented at

the end of each decision problem. Subjects also provided data in a seventh

session for twelve choice problems of various sizes where the subject was free to

use any strategy desired.

Results

As expected, decision problems of increasing complexity, i.e., more

alternatives and/or more attributes, took longer and were viewed as more

effortful. Of greater interest, the effects of task complexity varied by

strategy. Compared to other strategies, the weighted additive rule (WADD) showed
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much more rapid increases in response time and somewhat more rapid increases in

self-reports of effort as a function of increased task complexity. Thus, there

was evidence of a strategy by task interaction in terms of these two indicators

of cognitive effort,

The central question of interest, however, was whether the EIP framework

could predict the effort required by each strategy in the various task

environments. To answer this question, we used regression analyses to assess the

degree to which four alternative models of effort based on EIPs fit the observed

response times and self-reports of effort. The simplest model treated each EIP

as equally effortful and summed the numbers of each component EIP to get an

overall measure of effort (the eaual-weiahted EIP model). The second model

allowed the effort required by each individual EIP to vary (the weighted EIP

model) by using counts for each of the individual EIPs as separate independent

variables. A third model allowed the effortfulness of the individual EIPs to

vary across rules (the weighted EIP by rule model). While such a variation is

possible, of course, the goal of developing a unifying framework for describing

the effort of decision strategies would be much more difficult if the sequence of

operations or the rule used affected the effort required for individual EIPs.

The fourth model allowed the required effort for each EIP to vary across

individuals, but not rules (the weighted EIP by individual model), based on the

expectation that some individuals would find certain EIPs relatively more

effortful than other individuals. A fifth model based simply on the amount of

information processed (the information acquisitions model) was also assessed as a

baseline model of decision effort. This last model implies that the specific

type of processing done on the information acquired makes little or no difference

in determining decision effort.
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Overall, the results yielded strong support for the EIP approach to strategy

effort. A model of effort based upon weighted EIP counts provided good fits for

response times (R2 - .84) and self-reports of effort (R2 - .59). In addition,

the fit of the weighted EIP model to the data was statistically superior to the

baseline model of information acquisitions and to the equal-weighted EIP model.

Thus, it appears that a model of cognitive effort in choice requires not only

concern for the amount of information processed, but also differential weighting

of the particular processes (EIPs) applied to that information. Interestingly,

the estimates of the time taken for each EIP were mostly in line with prior

cognitive research. For example, the READ EIP combines encoding information with

the -,)tor activity of moving the rc)use. Its estimated latency is 1.19 seconds.

This estimate is plausible, since it might consist of the movement of the mouse,

estimated to be in the range of .2 - 8 seconds by Johnson, Payne, Schkade, and

Bettman (1988), and an eye fixation, estimated to require a minimum of .2 seconds

(Russo, 1978). ADDITIONS and SUBTRACTIONS both take less than on second, with

estimates of .84 and .32, respectively. These values are not significantly

different and are consistent with those provided by Dansereau (1969), Groen and

Parkman (1972), and others (see Chase, 1978, Table 3, p. 76). Our estimate for

the PRODUCT EIP, 2.23 seconds, is larger than that commonly reported in the

literature. The time for COMPARES is very short, .08 seconds, and that for

ELIMINATIONS, 1.80 seconds, is relatively long. This may reflect the

collinearity of COMPARES and ELIMINATIONS.

The weights for the various EIPs were essentially the same regardless of the

decision strategy used. That is, the fits for the more complex weighted EIP by

rule model were essentially the same as the fits for the weighted EIP model.

This supports the assumption of independence of EIPs across rules.
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However, the results showed significant individual differences in the effort

associated with individual EIPs, suggesting that individuals may choose different

decision strategies in part because component EIPs may be relatively more or less

effortful across individuals. In fact, Bettman, Johnson, and Payne (In press)

show that the processing patterns-used by subjects in af unconstrained choice

environment 4ere related to the relative costs of certain EIPs, although the

limited number of subjects in that study precluded any strong conclusions.

Subjects for whom arithmetic operators were relatively more difficult, as

indicated by the coefficients for the various EIPs, showed greater selectivity in

processing.

To summarize, we found strong support for the EIP approach to conceptualizing

and measuring the effort of executing a particular choice strategy in a specific

task environment. Next, we examine whether the general patterns of processing

predicted by the simulation agree with the processing patterns exhibited by

decision makers adapting to variations in dispersion of probabilities and time

pressure. Such a match, together with the success of the EP approach to

measuring effort reported above, would provide powerful support for our proposed

approach to crntingent strategy selection. In the next section, therefore, we

consider adaptivity in strategy selection when both effort and accuracy may be

valued and when subjects are free to use any information processing strategy they

wish in making a choice.

Adaptive Strategy Selection

The experiments asked the following two questions: (1) To what extent do

people vary their information processing behavior as a function of context

effects such as the dispersion of probabilities and task effects such as time

pressure?; and (2) Are these changes in processing in the directions suggested by
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the simulation work described earlier? Again, the method and results can only be

summarized. Details can be found in Payne, Bettman, and Johnson (1988).

Method

Two experiments were conducted in which subjects were asked to make a series

of choices from sets of risky options. Each choice set contained four risky

options, with each option offering four possible outcomes (attributes). For any

given outcome, the probability was the same for all four options. Thus, there

was only one set of probabilities for each set of four alternatives. The payoffs

ranged from $.Ol to $9.99. Dominated options were possible. At the end of an

experiment, subjects actually played one gamble and received the amount of money

that they won. The sets varied in terms of two factors: (1) presence or absence

of time pressure and (2) high or low dispersion in probabilities. In terms of

the simulation, the no time pressure conditions correspond to the dominance

possible, low and high dispersion conditions shown in Figure 1. The high time

pressure sets correspond to conditions not shown in Figure 1, but the general

patterns of results for such conditions were briefly discussed in the section

describing the simulation results. In the first experiment, the time pressure

condition involved a 15 second time constraint. In the second experiment, half

the subjects had a 15 second constraint. The other half had a more moderate 25

second time constraint. Also, in the second experiment subjects returned for a

second experimental session that was similar to the first except that the time

constraint was at the level they had not yet experienced, i.e., the time pressure

for the second session was set at 25 seconds if the subject was in the 15 second

condition on the first day and vice versa. For comparison, the average response

time for the no time pressure conditions was 44 seconds.

The design was a complete within-subjects procedure, with a total of 40

randomly ordered decision problems in an experimental session, ten in each of the
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four dispersion by time pressure conditions. This design was motivated by the

desire to provide the strongest possible test of adaptivity in decision making

(i.e., the same subject would be expected to switch strategies from one trial to

the next). The subjects were not provided any accuracy feedback in these

experiments for two reasons: (1) It is the exception, rather than the rule, for

probabilistic decision problems to provide immediate and clear outcome feedback

(Einhorn, 1980); (2) To the extent that adaptivity is exhibited in such

situations, it suggests that adaptivity is crucial enough to decision makers that

they will guide themselves to it without the need for explicit feedback.

Information acquisitions, response times, and choices were-monitored using

the Mouselab system (Johnson et. al., 1988). For the time constrained trials,

the Mouselab system ensured that subjects could not collect any additional

information once the available time had expired. A clock on the display screen

was used to indicate the time left as it counted down.

Results

Overall, the results for subjects' actual decision behaviors validated the

patterns predicted by the simulation. Subjects showed a substantial degree of

adaptivity in decision making, although this adaptivity was not perfect.

More specifically, subjects processed less information, were more selective

in processing, and tended to process more by attribute when dispersion in

probabilities was high rather than low. Moreover, accuracy was equivalent for

the two dispersion conditions. Thus, subjects showed an ability to take

advantage of changes in the structure of the available alternatives so as to

reduce processing load while maintaining accuracy. Recall that this prediction

was drawn from the simulation results.

At the level of individual subject behavior, there was evidence that

subjects who were more adaptive in their patterns of processing (i.e., relatively
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more selective and attribute-based processors in high dispersion environments)

also performed better in terms of relative accuracy scores. Importantly, this

increase in performance was not accompanied by a significant increase in effort.

Hence, more adaptive subjects also appeared to be more efficient decision makers.

Several effects of time pressure were also demonstrated. First, under

severe time pressure, people accelerated their processing (i.e., less time was

spent per item of information acquired), selectively focused on a subset of the

more important information, and changed their pattern of processing in the

direction of relatively more attribute-based processing. This general pattern of

results is consistent with the simulation, which suggested that an efficient

strategy under severe time pressure was one that involved selective and

attribute-based processing.

The effects of time pressure were substantially less for those subjects with

a 25 as opposed to 15 second constraint. In the more moderate condition,

subjects showed evidence of acceleration in processing and some selectivity in

processing, but no evidence of a shift in the pattern of processing. These

results suggested a possible hierarchy of responses to time pressure. First,

people may try to respond to time pressure simply by working faster. If this is

insufficient, people may then focus on a subset of the available information.

Finally, if that is still insufficient, people may change processing strategies,

e.g., from alternative-based processing to attribute-based processing.

Although these results suggest high adaptivity, there was evidence to

suggest that the adaptivity to time pressure was not perfect on a trial by trial

basis. When the responses to the no time pressure condition were compared for

the two groups of subjects in the second experiment, some carryover from behavior

generated in response to the time pressure trials to performance on the no time

pressure trials was detected. Specifically, subjects who had the more severe 15
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second time constraint showed comparatively more attribute-based processing, even

in the no time pressure trials.

To summarize, the results provided strong evidence of adaptivity in decision

making. While not perfectly adaptive, our subjects were able to change

processing strategies in ways that the simulation indica'ted were appropriate.

Taken together, the results of the simulation, models of cognitive effort, and

experiments in adaptive decision making provide strong and consistent support for

the proposed EIP approach to strategy selection. We believe that this approach

provides a more systematic approach to characterizing effort and accuracy for

decision strategies than any other currently available. It is our belief that

further application of this conceptualization to problems of contingent strategy

selection would be very fruitful.

Although we are excited by the progress made thus far, there are several

incomplete aspects of our framework. The next section examines several of these

issues.

Some Unresolved Issues

Implicit in our approach is a top-down view of strategy selection. When

deciding how to decide, a decision maker is assumed to evaluate the costs and

benefits of the various strategies known to him or her and to select that

strategy which is in some sense best for the environment. We now believe that

this view is too restrictive. While we still espouse an effort/accuracy

viewpoint and the idea of multiple strategy use, we have begun to consider

several broader concerns which lead to a more complex view of contingent decision

behavior.

Assessing How Well One is Doing

In order to adapt to task demands, it seems reasonable that individuals must

determine, even if roughly, how well they are doing. The notion of adjustment
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via effort/accuracy tradeoffs, in particular, implies the ability to generate

ideas about the degree of effort and accuracy characterizing one's decision

process. Our data on adaptivity in strategy use suggest that people can learn to

change behavior as a function of task and context variables. Yet none of the

experiments provided subjects with explicit accuracy or butcome feedback. Thus,

how do people learn when and how to change decision strategies?

In the absence of explicit feedback, individuals must somehow generate their

own feedback about effort and accuracy. This is not too difficult to imagine for

effort. In the course of solving a decision problem, the decision maker has a

fairly rich data base available about how effortful and/or difficult he or she is

finding the decision. This process feedback (Anzai and Simon, 1979) could

provide the basis for a change in strategy. To illustrate, consider a faculty

member asked to identify a small number (3) of job candidates to be brought in

for an interview. Assume that over 100 applications have been received. Also

assume that the faculty member is inexperienced at this task and that he or she

wants to do a good job. Initially, we suspect that the faculty member would try

to evaluate each application in great depth. However, at some point that person

would likely recognize that the process is becoming increasingly effortful and

would think about a change in processing strategy. One implication of such

readily available process feedback on effort is that considerations of effort

will play a prominent role in strategy selection.

Self-generation of accuracy feedback is not as obvious. One possibility is

that along with process feedback, people have some general knowledge of the

properties of a reasonable strategy. For example, decision makers might believe

that a good strategy involves looking first at the most important information for

all alternatives, and then looking at other information as desired or as time

allows. Some data supporting such general beliefs about good decision strategies
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are reported in Payne et. al. (1988). With such knowledge, the individual could

not only ascertain the effort required during the course of making a decision,

but could also determine how closely this decision process resembled his or her

notion of what a "good" strategy should entail. In the absence of environmental

constraints, the match between the strategy used and notions of a "good" strategy

should presumably be close and the individual's accuracy assessment would be

"high". However, if there were severe environmental constraints (e.g., great

time pressure), the individual may feel that the strategy, either as executed or

while executing, did not match his or her notion of a reasonable strategy. For

example, important information may not have been examined before time ran out.

Klein (1983) reports data supporting this kind of learning about the task during

decision making. The individual could then adjust the decision process to be

more in line with his or her notion of reasonableness, either on-line or the next

time such a decision was faced.

Recently, Reder (1987) has considered strategy changes without explicit

feedback in a task dealing with question answering strategies and proposed a

"feeling of knowing" process that is related to our ideas. She argues that

people may develop strategies that are adaptive to different problem environments

by trying to minimize effort while maintaining a feeling of knowing that a

reasonable answer is being produced. An interesting issue is how well-calibrated

such feelings of knowing may be in the area of decision making, and how they are

affected by decision task properties.

The possibility that process feedback provides information about both the

effort and accuracy of making a decision raises another question: Under what

conditions will explicit feedback about effort and accuracy be used by decision

makers? Creyer, Bettman, and Payne (1988) found that explicit feedback on the

time used to make a decision (a measure of effort used) had no effect on decision
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processes. Of greater interest, explicit accuracy feedback also had little

impact for decision problems similar to the high dispersion in probabilities

(weights) choice problems used in Payne et. al. (1988) and discussed above. On

the other hand, explicit accuracy feedback did change processing and improve

performance for those decision problems involving low dispersion in weights

(probabilities). One explanation of these results is that explicit accuracy

feedback is only needed to supplement process feedback for those situations where

the decision maker is faced with more difficult problems. When asked to rate

decision problems according to degree of difficulty, subjects rated low

dispersion problems as more difficult than high dispersion problems.

Although there is a large literature on feedback, learning, and judgment

(Brehmer, 1980; Einhorn, 1980), issues regarding learning and contingent strategy

selection in decision making are just beginning to be explored. However, a

better understanding of the role of process feedback and strategy selection seems

crucial for building a more complete model of the adaptive use of heuristics in

decision making. As discussed in Johnson and Payne (1985), learning mechanisms

in decision making also offer a solntion to the infinite regress difficulty

associated with the hypothesis that people decide how to choose. Such strategy

decisions are not made often, but the relationship between task and context

variables and the efficiency of a decision strategy is learned over time.

Finally, as discussed next, process feedback may also be important in

understanding the construction of decision processes (Bettman, 1979) as well as

their selection.

A Constructive View of Choice and Editing

As noted above, effort/accuracy frameworks for strategy selection often

implicitly assume a top-down process. That is, information about the task is

used to assess the costs and benefits of various strategies, and the best
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strategy is then selected and applied to solving the choice problem. There are

data supporting such a goal-directed process of strategy selection (Payne, 1976).

Nonetheless, heuristic problem solvers not only use information extracted from

the initial problem definition in deciding how to search, but also utilize

information from states already explored in the problem space to identify

promising paths for search (Langley, Simon, Bradshaw, and Zytkow, 1987). That

is, as people learn about the problem structure during the course of making a

decision, they may change their processing to exploit this structure. This view

of strategy selection as an opportunistic process (Hayes-Roth and Hayes-Roth,

1979) also suggests that editing processes (Kahneman and Tversky, 1979) are a

crucial component of adaptivity.

Editing processes have been proposed as an important component of choice

(Kahneman and Tversky, 1979; Goldstein and Einhorn, 1987), with individuals

supposedly editing choice problems into simpler forms before choosing. Editing

could involve cancellation of outcomes which are identical across alternatives,

eliminating dominated alternatives, and/or combining of equal payoff outcomes,

for example. To the extent that editing can simplify choice, it is potentially a

major component in understanding the role of cognitive effort and adaptivity to

different decision environments.

Whereas Kahneman and Tversky (1979) and Goldstein and Einhorn (1987) argue

that editing processes come first, with alternatives edited and then the

simplified options evaluated, we argue instead that editing occurs throughout a

choice whenever individuals notice some structure in the choice environment that

can be exploited. Hence, editing can be a bottom-up process, driven by the data,

as well as a priori or top-down. Thus, one might not decide a priori to

eliminate dominated alternatives but might eliminate such alternatives only if

noticed during the course of processing.
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The editing process itself may be adaptive in that the particular editing

operations used may be a function of problem states already explored. Different

types of processing will leave different traces in working memory, and these

traces will be more or less compatible with different editing operations. For

example, processing a pair of alternatives using an attribute-based form of

processing will facilitate the detection of dominance, whereas an alternative-

based form of processing would discourage such detection. Hence, different

choice strategies enable different editing operations during the course of

processing. Therefore, different choice environment properties will affect

editing because they affect strategy selection. This is likely to be

particularly true for the effects of information display. Slovic, for example,

(1972) has argued for a principle of concreteness, which states that individuals

tend to use information in the form in which it is displayed. To the extent this

is true, display should exert a strong influence on editing processes by

encouraging or discouraging various types of processing.

This opportunistic view of editing implies a more constructive view of

choice (Bettman, 1979). Such a view implies that people develop simplifications

and strategies as they progress in a decision process, rather than invoking them

a priori. Which regularities in the task environment (if any) are noted and

exploited can profoundly affect the course of the decision process, so the

sequence of editing operations can have a major impact on the resultant process

and decision (Tversky and Kahneman, 1986).

Amazingly, however, almost nothing is known about editing processes. Such

research topics as what features of a decision task are noticed and exploited,

how this changes with display format, and studies of the determinants of focus of

attention in decision making are badly needed. We agree with Yates, Jagacinski,

and Faber (1978) that events affecting attention in the real world are likely to
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be numerous and powerful and that such events are not just experimental nuisance

factors.

Incentives and Strategy Selection

As stated at the beginning of this chapter, the major focus of our research

has been on the role of cognitive effort in strategy selection. Questions of

strategy accuracy have played an important, but secondary,.role in our research.

In particular, we have not emphasized the direct role of incentives in strategy

selection, although subjects in our studies do receive compensation tied to

performance. However, it is clear that an effort/accuracy framework for strategy

selection must deal wi.h incentive effects more directly.

The effort/accuracy framework implies that people should utilize strategies

that provide greater accuracy at the cost of greater effort when the incentives

associated with accuracy are increased. However, as pointed out by several

authors (Tversky and Kahneman, 1986; Wright and Aboul-Ezz, 1986), incentives

sometimes enhance performance and at other times have no effect. We have

obtained similar mixed results in our own research. Sometimes incentive effects

are in the direction predicted by our framework, in that people increase the

amount of processing, are less selective in processing, and process more by

alternative than by attribute when goals and incentives are structured to

emphasis accuracy more than effort (Creyer, Bettman, and Payne, 1988). At other

times, however, we have found incentive effects either difficult to detect or in

directions opposite from those predicted. For example, Simonson (1987) found

that the frequency with which the context variable of asymmetric dominance

relationships (Huber, Payne, and Puto, 1982) impacts choice is increasled with an

increased need to justify one's decision. To the extent that the need to justify

or be accountable for a decision impacts on the desire to make a "good" decision
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(Beach and Mitchell, 1978; Tetlock, 1985), this finding seems contrary to what

one would expect.

One solution to the ambiguity of this research is the common distinction

between working harder versus working smarter. Tversky and Kahneman (1986), for

example, argue that incentives work by focusing attentioh and prolonging

deliberation. That is, incentives cause people to work harder but not

necessarily smarter (see also Einhorn & Hogarth, 1986). However, if people do

not change strategies but just work harder, this may have the paradoxical effect

of increasing error in decisions through increased effort applied to executing a

flawed strategy (Arkes, Dawes, and Christensen, 1986). It is also important to

recognize that incentives will not eliminate errors if a normative strategy is

impossible to use due to information processing limitations or environmental

factors such as severe time pressure (Simon, 1981). Finally, any shift in

strategy due to incentives would seem to require awareness of alternative

strategies. In some cases, incentives may have limited impact due to a lack of

awareness of any better decision strategy than the one currently being used.

Thus, one important direction for research on strategy selection is to understand

better when and how incentives will impact processing and choice.

To this point, we have reviewed research concerned with basic research

questions in the area of behavioral decision research. However, as indicated in

the theme of this conference, the work of Hillel Einhorn was concerned both with

theory and application. Consequently, we will end this chapter with a discussion

of one implication of our program of research for improving decisions.

Designing Decision Displays

An exciting application of the effort/accuracy approach is guiding the

design of information displays to facilitate better decision making. By

designing displays which make more effective processing easier, decision
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performance should be improved. Like Slovic (1972), we suspect that decision-

makers are greatly influenced by the form of the information presented and are

unlikely to transform information so that it will fit strategies. By making

better strategies easier to use, the application of more efficieht decision

heuristics can be encouraged.

An excellent demonstration of decision aiding through information display

changes is provided by Russo (1977). Russo argued that using unit price

information in the supermarket was unduly effortful, requiring that consumers

locate the various unit-price tags spread throughout the shelf and remember these

values until other brands could be located. He reduced the required effort by

combining all unit-price tags into a single list, sorted by unit price. A field

study comparing the existing shelf tags and the list showed that the list

produced a 2% decrease in the average price paid, representing 11% of the savings

possible by always buying the least expensive brand. More generally, encouraging

the use of efficient strategies by making them easier to execute has important

implications for providing product information to the public (Bettman, Payne, and

Staelin, 1986).

Johnson, Payne, and Bettman (1988) show that the design of information

displays can have important consequences on the frequency of one of the most

dramatic decision errors, the preference reversal (Lichtenstein and Slovic,

1971). In the preference reversal paradigm, subjects choose among and give

monetary equivalents for two gambles. Preference reversals occur when a subject

indicates a choice of one gamble but gives a higher monetary equivalent for the

other gamble in the pair. In the typical preference reversal experiment, the

probabilities are described as fractions, a consequence of using a roulette wheel

to determine outcomes. Johnson et al. suggested that these fractions (29/36, for

example) discouraged the use of expectation strategies and facilitated the use of

L
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heuristic strategies which produced reversals. They manipulated the way

identical probabilities were displayed, ranging from simple decimals (.8) to

quite complex fractions (284/355). The complex fractions produced almost twice

as many reversals as the decimals. Further, process-tracing measures, collected

with Mouselab, were consistent with the notion that the simpler displays

encouraged using expectation strategies.

Together, these examples illustrate the principle of passive decision

support. In contrast to more active approaches which replace human cognitive

processes to aid decisions, better decisions can be encouraged by designing

displays which passively encourage more accurate strategies by making them easier

to execute. Such reductions in execution effort can be achieved by using formats

which make operations such as comparisons easier or by making individual pieces

of data easier to process, for example.

Conclusion

A major finding of the last twenty years of decision research is that an

individual will us- many different strategies in making a decision, contingent

upon task demands (Einhorn and Hogarth, 1981; Payne, 1982; Abelson and Levi,

1985). The use of multiple strategies raises the fundamental issue of how people

decide to decide. This chapter reviews a program of research directed at

understanding the adaptive use of strategies in decision making. While people

clearly sometimes make decisions that violate certain principles of rationality

(Tversky, 1969), it is also becoming clear that deision makers often adapt in

directions representing efficient effort/accuracy tradeoffs.
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Footnotes

1. Different EIPs may require different levels of effort. For example,

comparing two values may be easier than adding or multiplying them. Hence,

the operator counts could be weighted by some measure of the effort

required for each individual operator, such as the time estimates mentioned

below. The results remain essentially the same whether a weighted or

unweighted EIP count is used to measure effort.

2. Depending upon the definition of the particular strategy, the alternative

selected when time ran out was either the best alternative processed up to

the point time ran out or an alternative randomly chosen from those

alternatives not yet eliminated when time ran out.
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